China Standard 47L Aluminum Co Gas Cylinder Made in China vacuum pump for ac

Product Description

Material: Steel
Use: Industrial Gas
Pressure: High
Brand Name: DSW
Model Number: ISO232-47-150

Nitrogen gas cylinder
1. Working pressure come to 150 bar.
2. Hydraulic test pressure: 250bar, water capcity come to 40Liter

So far our products are enjoying good markets at home and exporting to European and American countries, the Middle East countries, West Asia, as well as South and East Asia countries.

40L, 47l and 50L medical oxygen cylinders  
Type   (mm)
Design Wall
ISO232-40-150 219 40 1167 43 200 5.2 37Mn
ISO232-47-150 47 1351 49
ISO232-50-150 50 1430 51.6
ISO232-40-200 232 40 1156 44.9 200 5.2 34CrMo4
ISO232-46.7-200 46.7 1333 51
ISO232-47-200 47 1341 51.3
ISO232-50-200 50 1420 54
EN232-40-210 232(TPED) 40 1156 44.9 230 5.8 34CrMo4
EN232-46.7-210 46.7 1333 51
EN232-47-210 47 1341 51.3
EN232-50-210 50 1420 54
EN232-40-230 40 1156 44.9 230 5.8 34CrMo4
EN232-46.7-230 46.7 1333 51
ISO232-47-230   47 1341 51.3
ISO232-50-230   50 1420 54
ISO267-40-150 267 40 922 43.3 150 5.8 37Mn
ISO267-50-150 50 1119 51.3


S.N Serial No. The weight without valve&cap(kg) Volumetric Capacity(L)  Total expansion(ml)  Permanent expansion(ml)  Percent of Permanent to totalexpanison(%) Test Pressure 250Bar  Lot and Batch No.
1 16Z380 001 56.4 47.3 149.0  2.3 1.5  250 16Z380
2 16Z380 002 56.7 47.2 155.1  2.7 1.7  250 16Z380
3 16Z380 003 57.3 47.2 156.1  2.4 1.5  250 16Z380
4 16Z380 004 56.8 47.4 148.9  2.8 1.9  250 16Z380
5 16Z380 005 57 47.4 149.9  2.5 1.7  250 16Z380
6 16Z380 006 56.8 47.4 149.9  2.3 1.5  250 16Z380
7 16Z380 007 56.9 47.3 153.0  2.6 1.7  250 16Z380
8 16Z380 008 57.3 47.2 155.1  2.3 1.5  250 16Z380
9 16Z380 009 56.7 47.5 146.8  2.1 1.4  250 16Z380
10 16Z380 571 56.2 47.6 147.6  2.3 1.6  250 16Z380
11 16Z380 011 56.3 47.2 151.2  2.2 1.5  250 16Z380
12 16Z380 012 56 47.4 151.8  2.1 1.4  250 16Z380
13 16Z380 013 56.4 47.3 150.0  2.1 1.4  250 16Z380
14 16Z380 014 56.2 47.7 145.5  2.4 1.6  250 16Z380
15 16Z380 015 57.1 47.5 153.7  2.5 1.6  250 16Z380
16 16Z380 016 57.2 47.4 152.8  2.6 1.7  250 16Z380
17 16Z380 017 55.9 47.4 151.8  3.1 2.0  250 16Z380
18 16Z380 018 57 47.3 154.0  2.8 1.8  250 16Z380
19 16Z380 019 56.4 47.5 150.7  2.5 1.7  250 16Z380
20 16Z380 571 57.1 47.1 156.2  2.9 1.9  250 16Z380
21 16Z380 571 56.9 47.2 154.1  2.8 1.8  250 16Z380
22 16Z380 571 56.5 47.3 154.0  2.5 1.6  250 16Z380
23 16Z380 571 57.3 47.2 155.1  2.9 1.9  250 16Z380
24 16Z380 571 57.3 47.2 154.1  2.6 1.7  250 16Z380
25 16Z380 571 57.2 47.2 154.1  2.8 1.8  250 16Z380
26 16Z380 026 57.3 47 153.4  2.3 1.5  250 16Z380
27 16Z380 571 55.8 47.4 152.8  2.6 1.7  250 16Z380
28 16Z380 571 55.6 47.4 151.8  2.8 1.8  250 16Z380
29 16Z380 571 56.2 47.3 150.0  2.4 1.6  250 16Z380
30 16Z380 030 55.8 47.3 148.0  2.1 1.4  250 16Z380
31 16Z380 031 55.7 47.3 148.0  2.1 1.4  250 16Z380
32 16Z380 032 57 47.2 149.2  2.3 1.5  250 16Z380
33 16Z380 033 57.4 47.3 149.0  2.3 1.5  250 16Z380
34 16Z380 034 56.2 47.4 151.8  2.6 1.7  250 16Z380
35 16Z380 035 56.7 47.3 151.0  2.7 1.8  250 16Z380
36 16Z380 036 56.4 47.1 155.3  2.3 1.5  250 16Z380
37 16Z380 037 56.8 47.2 155.1  2.9 1.9  250 16Z380
38 16Z380 038 56.6 47.1 151.3  2.3 1.5  250 16Z380
39 16Z380 039 55.8 47.3 154.0  2.8 1.8  250 16Z380
40 16Z380 040 56.9 47.3 151.0  2.9 1.9  250 16Z380
41 16Z380 041 56.1 47.4 149.9  2.3 1.5  250 16Z380
42 16Z380 042 56.5 47.1 152.3  2.3 1.5  250 16Z380
43 16Z380 043 56.6 47.2 148.2  2.2 1.5  250 16Z380
44 16Z380 044 55.9 47.3 148.0  2.3 1.6  250 16Z380
45 16Z380 045 56.2 47.4 151.8  2.9 1.9  250 16Z380
46 16Z380 046 57.1 47.1 152.3  2.8 1.8  250 16Z380
47 16Z380 047 57.1 47.2 150.2  2.4 1.6  250 16Z380
48 16Z380 048 56.2 47.4 152.8  2.9 1.9  250 16Z380
49 16Z380 049 57 47.3 150.0  3 2.0  250 16Z380
50 16Z380 050 56.2 47.2 152.1  2.7 1.8  250 16Z380

Established in 1998. Our company possesses 3 production lines for production of various seamless gas cylinders. The annual production and sale for gas cylinders of below 20L for 600 thousand pieces, accounting for 90% domestic share in small size gas cylinder market. The recently set up new production line for 0.4L-80L emergency respirator, colliery escape capsule and refuge chamber has the annual production of 700 thousand pieces of cylinders. By the year 2013, the total specifications we do ascent to 109 types to meet different customers' requirement.

Our major products are oxygen cylinder, nitrogen gas cylinder, carbon dioxide gas cylinder, argon gas cylinder, other industrial gas cylinder, medical oxygen gas cylindersupply unit, etc., with wide application for fields of medical apparatus and instruments, engineering machinery, colliery rescue, gas industry, welding-cutting machinery, and chemical industry. Our cryogenic vessels production line mainly produce cryogenic liquid storage tanks, welding insulation cylinders, cryogenic reaction device, cryogenic tanks, cryogenic ISO tank container and air temperature vaporizer.

Material: Aluminum
Structure: Gas - Liquid Damping Cylinder
Power: Hydraulic
Standard: Standard
Pressure Direction: Single-acting Cylinder
Double-Acting Cylinder Type: Common Cylinder


hydraulic cylinder

Can hydraulic cylinders be integrated with advanced control systems and automation?

Yes, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and overall performance. The integration of hydraulic cylinders with advanced control systems allows for more sophisticated and precise control over their operation, enabling automation and intelligent control. Here's a detailed explanation of how hydraulic cylinders can be integrated with advanced control systems and automation:

1. Electronic Control:

- Hydraulic cylinders can be equipped with electronic sensors and transducers to provide real-time feedback on their position, force, pressure, or velocity. These sensors can be integrated with advanced control systems, such as programmable logic controllers (PLCs) or distributed control systems (DCS), to monitor and control the operation of hydraulic cylinders. By integrating electronic control, the position, speed, and force of hydraulic cylinders can be precisely monitored and adjusted, allowing for more accurate and automated control.

2. Closed-Loop Control:

- Closed-loop control systems use feedback from sensors to continuously monitor and adjust the operation of hydraulic cylinders. By integrating hydraulic cylinders with closed-loop control systems, precise control over position, velocity, and force can be achieved. Closed-loop control enables the system to automatically compensate for variations, external disturbances, or changes in operating conditions, ensuring accurate and consistent performance. This integration is particularly beneficial in applications that require precise positioning, synchronization, or force control.

3. Proportional and Servo Control:

- Hydraulic cylinders can be integrated with proportional and servo control systems to achieve finer control over their operation. Proportional control systems use proportional valves to regulate the flow and pressure of hydraulic fluid, allowing for precise adjustment of cylinder speed and force. Servo control systems, on the other hand, combine feedback sensors, high-performance valves, and advanced control algorithms to achieve extremely precise control over hydraulic cylinders. Proportional and servo control integration enhances the responsiveness, accuracy, and dynamic performance of hydraulic cylinders.

4. Human-Machine Interface (HMI):

- Hydraulic cylinders integrated with advanced control systems can be operated and monitored through human-machine interface (HMI) devices. HMIs provide a graphical user interface that allows operators to interact with the control system, monitor cylinder performance, and adjust parameters. HMIs enable operators to set desired positions, forces, or velocities, and visualize the real-time feedback from sensors. This integration simplifies the operation and monitoring of hydraulic cylinders, making them more user-friendly and facilitating seamless integration into automated systems.

5. Communication and Networking:

- Hydraulic cylinders can be integrated into communication and networking systems, enabling them to be part of a larger automated system. Integration with industrial communication protocols, such as Ethernet/IP, Profibus, or Modbus, allows for seamless information exchange between the hydraulic cylinders and other system components. This integration enables centralized control, data logging, remote monitoring, and coordination with other automated processes. Communication and networking integration enhance the overall efficiency, coordination, and integration of hydraulic cylinders within complex automation systems.

6. Automation and Sequential Control:

- By integrating hydraulic cylinders with advanced control systems, they can be seamlessly incorporated into automated processes and sequential control operations. The control system can execute predefined sequences or programmed logic to control the operation of hydraulic cylinders based on specific conditions, inputs, or timing. This integration enables the automation of complex tasks, such as material handling, assembly operations, or repetitive motions. Hydraulic cylinders can be synchronized with other actuators, sensors, or devices, allowing for coordinated and automated operation in various industrial applications.

7. Predictive Maintenance and Condition Monitoring:

- Advanced control systems can also enable predictive maintenance and condition monitoring for hydraulic cylinders. By integrating sensors and monitoring capabilities, the control system can continuously monitor the performance, health, and condition of hydraulic cylinders. This integration allows for the detection of abnormalities, wear, or potential failures in real-time. Predictive maintenance strategies can be implemented based on the collected data, optimizing maintenance schedules, reducing downtime, and enhancing the overall reliability of hydraulic systems.

In summary, hydraulic cylinders can be integrated with advanced control systems and automation technologies to enhance their functionality, precision, and performance. The integration allows for electronic control, closed-loop control, proportional and servo control, human-machine interface (HMI) interaction, communication and networking, automation and sequential control, as well as predictive maintenance and condition monitoring. These integrations enable more precise control, automation, improved efficiency, and optimized performance of hydraulic cylinders in various industrial applications.

hydraulic cylinder

Contribution of Hydraulic Cylinders to the Efficiency of Agricultural Tasks like Plowing

Hydraulic cylinders play a significant role in enhancing the efficiency of agricultural tasks, including plowing. By providing power, control, and versatility, hydraulic cylinders enable agricultural machinery to perform tasks more effectively and with greater precision. Let's explore how hydraulic cylinders contribute to the efficiency of plowing and other agricultural tasks:

  1. Powerful Force Generation: Hydraulic cylinders are capable of generating high forces, making them ideal for tasks that require substantial power, such as plowing. The hydraulic system provides pressurized fluid to the cylinders, which convert this hydraulic energy into mechanical force. This force is then utilized to drive plow blades through the soil, overcoming resistance and facilitating efficient soil penetration.
  2. Adjustable Working Depth: Hydraulic cylinders allow for easy and precise adjustment of plow working depth. By controlling the extension or retraction of the hydraulic cylinder, the depth of the plow blades can be adjusted according to soil conditions, crop requirements, or the farmer's preferences. This adjustability enhances efficiency by ensuring optimal soil tillage and minimizing unnecessary energy expenditure.
  3. Responsive Control: Hydraulic systems offer highly responsive control, enabling farmers to make quick adjustments during plowing operations. Hydraulic cylinders respond rapidly to changes in hydraulic pressure and valve settings, allowing for immediate modifications in the plow's position, depth, or angle. This responsiveness enhances efficiency by facilitating on-the-go adjustments based on soil variations, obstacles, or changing field conditions.
  4. Implement Versatility: Hydraulic cylinders enable the attachment of various implements to agricultural machinery, expanding their functionality and versatility. In the case of plowing, hydraulic cylinders allow for the attachment and detachment of plow blades or other tillage implements. This versatility enables farmers to adapt their equipment to different soil types, field sizes, or specific plowing requirements, enhancing efficiency by maximizing the utility of the machinery.
  5. Efficient Time Management: Hydraulic cylinders contribute to time efficiency in agricultural tasks like plowing. With hydraulic systems, farmers can operate plows at higher speeds while maintaining control and precision. The responsive nature of hydraulic cylinders allows for efficient turning, maneuvering, and repositioning of plows, minimizing downtime and optimizing field coverage. This time efficiency translates into increased productivity and reduced overall operational costs.

In summary, hydraulic cylinders significantly contribute to the efficiency of agricultural tasks like plowing. Through powerful force generation, adjustable working depth, responsive control, implement versatility, and efficient time management, hydraulic systems equipped with cylinders enhance the performance and productivity of agricultural machinery. These contributions allow farmers to accomplish plowing tasks more effectively, optimize field operations, and achieve improved overall efficiency in their agricultural practices.

hydraulic cylinder

What is a hydraulic cylinder and how does it function in various applications?

A hydraulic cylinder is a mechanical actuator that converts hydraulic energy into linear force and motion. It plays a critical role in various applications where controlled and powerful linear motion is required. Hydraulic cylinders are commonly used in industries such as construction, manufacturing, agriculture, and transportation. Here's a detailed explanation of what a hydraulic cylinder is and how it functions:

Definition and Components:

- A hydraulic cylinder consists of a cylindrical barrel, a piston, a piston rod, and various seals. The barrel is a hollow tube that houses the piston and allows for fluid flow. The piston divides the cylinder into two chambers: the rod side and the cap side. The piston rod extends from the piston and provides a connection point for external loads. Seals are used to prevent fluid leakage and maintain hydraulic pressure within the cylinder.


- The function of a hydraulic cylinder is to convert the pressure and flow of hydraulic fluid into linear force and motion. The hydraulic fluid, typically oil, is pressurized and directed into one of the chambers of the cylinder. As the fluid enters the chamber, it applies pressure on the piston, causing it to move in a linear direction. This linear motion of the piston is transferred to the piston rod, creating a pushing or pulling force.

Working Principle:

- The working principle of a hydraulic cylinder is based on Pascal's law, which states that pressure exerted on a fluid in a confined space is transmitted equally in all directions. In a hydraulic cylinder, when hydraulic fluid is pumped into one side of the cylinder, it creates pressure on the piston. The pressure is transmitted through the fluid to the other side of the piston, resulting in a balanced force across the piston and piston rod. This force generates linear motion in the direction determined by the fluid input.


- Hydraulic cylinders find extensive use in a wide range of applications due to their ability to generate high forces and precise control of linear motion. Some common applications include:

1. Construction Equipment: Hydraulic cylinders are used in excavators, loaders, bulldozers, and cranes for lifting, pushing, and digging tasks.

2. Manufacturing Machinery: Hydraulic cylinders are employed in presses, machine tools, and material handling equipment for pressing, clamping, and lifting operations.

3. Agricultural Machinery: Hydraulic cylinders are used in tractors, harvesters, and irrigation systems for tasks like steering, lifting, and controlling attachments.

4. Transportation: Hydraulic cylinders are utilized in vehicles such as dump trucks, garbage trucks, and forklifts for tilting, lifting, and tipping operations.

5. Aerospace and Defense: Hydraulic cylinders are employed in aircraft landing gear, missile systems, and hydraulic actuators for control surfaces.

6. Marine and Offshore: Hydraulic cylinders are used in ship steering systems, cranes, and offshore drilling equipment for various lifting and positioning tasks.

In these applications, hydraulic cylinders offer advantages such as high force capability, precise control, compact size, and durability. They provide efficient and reliable linear motion, contributing to enhanced productivity and functionality in a wide range of industries.

Overall, hydraulic cylinders are integral components in various applications where controlled and powerful linear motion is required. Their ability to convert hydraulic energy into mechanical force makes them invaluable in numerous industries, enabling the operation of heavy machinery, precise positioning, and efficient load handling.

China Standard 47L Aluminum Co Gas Cylinder Made in China   vacuum pump for ac	China Standard 47L Aluminum Co Gas Cylinder Made in China   vacuum pump for ac
editor by CX 2023-11-27